Generalized Fixed Point Algebras and Square-Integrable Group Actions
نویسندگان
چکیده
منابع مشابه
Generalized Fixed Point Algebras and Square-integrable Group Actions
We analzye Rieffel’s construction of generalized fixed point algebras in the setting of group actions on Hilbert modules. Let G be a locally compact group acting on a C∗-algebra B. We construct a Hilbert module F over the reduced crossed product of G and B, using a pair (E, R), where E is an equivariant Hilbert module over B and R is a dense subspace of E with certain properties. The generalize...
متن کاملIntegrable and Proper Actions on C-algebras, and Square-integrable Representations of Groups
We propose a definition of what should be meant by a proper action of a locally compact group on a C∗-algebra. We show that when the C∗-algebra is commutative this definition exactly captures the usual notion of a proper action on a locally compact space. We then propose a definition for the generalized fixed-point algebra, and show that it gives the desired algebra when the C∗-algebra is commu...
متن کاملFixed Point Formulas and Loop Group Actions
In this paper we present a new fixed point formula associated with loop group actions on infinite dimensional manifolds. This formula provides information for certain infinite dimensional situations similarly as the well known Atiyah-BottSegal-Singer’s formula does in finite dimension. A generalization of the latter to orbifolds will be used as an intermediate step. There exist extensive litera...
متن کاملGeneralized Conformal and Superconformal Group Actions and Jordan Algebras
We study the “conformal groups” of Jordan algebras along the lines suggested by Kantor. They provide a natural generalization of the concept of conformal transformations that leave 2-angles invariant to spaces where “p-angles” (p ≥ 2) can be defined. We give an oscillator realization of the generalized conformal groups of Jordan algebras and Jordan triple systems. A complete list of the general...
متن کاملFunctoriality of Rieffel’s Generalised Fixed-Point Algebras for Proper Actions
We consider two categories of C-algebras; in the first, the isomorphisms are ordinary isomorphisms, and in the second, the isomorphisms are Morita equivalences. We show how these two categories, and categories of dynamical systems based on them, crop up in a variety of C-algebraic contexts. We show that Rieffel’s construction of a fixed-point algebra for a proper action can be made into functor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2001
ISSN: 0022-1236
DOI: 10.1006/jfan.2001.3795